欢迎来到东莞市研科智能科技有限公司
新闻中心
产品目录
联系我们
AI用于电池研究,是炒作还是现实?
做好电池太难了

          
电池研发是一个复杂的多变量问题,涉及到性能、使用寿命、安全性、成本、环境影响和资源问题等多个方面。目前的研发模式是以材料为中心,先合成材料,制造电解液和电极,组装电池,最后评估性能。这样的模式就有10的100次方种方法来合成活性材料和制备电解液,这是一个天文数字,无法想象。电极制造参数的选择也有无限多的可能性,还有几十种可能的电池形式。
    
电池研发数据量呈指数级增长。例如巴斯夫(BASF)宣称,他们每天产生超过7000万个电池表征数据,法国电化学储能协会已经产生了约1000万个电池表征数据,每年能够1 产生1PB的电池数据。科学出版物已经远超30000篇锂离子电池期刊,而且这个数字还在迅速增长。如果一个研究人员每年阅读200篇论文,至少需要花150年的时间来阅读今天所有的锂离子电池论文。
          
而人工智能和机器学习能够帮助研究人员有效地解决电池研发参数和数据挑战。
      
AI到底可以干什么
          
材料设计与合成应用
利用自基于物理的模拟、实验等的高保真数据,AI可以在相对大量的变量之间找到复杂的非线性关系,有助于对具有相似特性的材料进行分类或预测新材料的目标特性。从而可用于搜索具有特定目标特性的新电池材料,例如电极材料、电解液或者固态电解质等。
          
AI还可以用于材料的多尺度建模与加速模拟,对现有文献数据(或文本)进行挖掘与分析等。
image.png

          
电极和电池制造中的应用   
电极和电池制造依赖于高度复杂的工艺,需要优化许多参数:电极和浆料配方、活性材料的化学性质、添加剂和溶剂、粉末预混合和浆料混合的时间和速度、涂覆速度和涂布间隙、干燥蒸发时间和温度、压延压力、所用设备类型、化成方案等。AI基于ML等方法可以处理多维数据集,并更好的理解制造参数的相互依赖性,从而加速和指导制造过程优化。结合AI的强大潜力,最终目标就是形成智能化的先进制造业和工业4.0。          
image.png
image.png    
          
材料和电极结构表征         
由于检测器技术的快速发展,表征数据生产比几十年前高出几个数量级。AI各种算法在数据预处理和分割、特征检测、模式识别以及真实的实时表征实验中可以辅助电极和材料表征。人工智能用于图像处理,目标是识别特定的图像特征并通过分割步骤将其提取出来,还可用于辅助光谱和衍射图案的复杂分析,以及辅助原位/离线的实验数据分析。
          
例如AI可以自动进行XPS、XRD等谱图, SEM/TEM/XCT图像等各种表征数据的分析与处理。   
image.png
          
电池诊断和预测 
为了确保电池在其整个使用寿命期间的可靠性,基于其电化学特性的真实的实时准确诊断非常重要,电池状态参数包括电池荷电状态(SOC)、健康状态(SOH)、循环寿命等。
  
电池寿命预测是一个复杂而重要的研究领域。在过去十年里,科学家们通过离线和在线两种方式进行了大量研究。离线预测使用历史数据,而在线预测则是在电池运行时实时收集数据。早期的研究基于半经验模型来预测电池的功率和容量损失。后来,许多研究者提出了物理和半经验模型,考虑了如SEI层增长、析锂层、活性物质损失和内阻增加等多种电池退化机制。这些模型虽然成功描述了电池的容量保持和内阻增加,但要开发一个全面考虑所有退化模式及其与热和机械耦合的模型,仍然面临挑战,因为这些因素会导致计算成本高昂,而且模型的普适性和长期预测的准确性也有待进一步提高。   
          
AI各种算法在电池的诊断和预测中的应用有很多文献报道,如寿命预测,性能,在线估计和安全性。绝大多数与AI应用于诊断和预测的文章都集中在在线估计(48%)或寿命预测(44%)上,而涉及性能和安全性的文章占少数(均为4%)。
image.png
          
此外,AI还可以帮助从海量信息中提取数据并对提取数据进行分析。比如收集不同格式的非结构化数据,如纯文本、pdf、html、xml或网页等;清理和预处理文本(删除标签,广告等)并将其转换为易于阅读的格式;将非结构化数据转换为结构化数据,作为训练AI算法的数据库。
 
电池AI不是炒作            
总之,人工智能在电池研发中非常有能力和潜力,并且已经有大量的科学研究实例和应用报道,只是目前主要还停留在研究领域,还没有在产业界的实际应用。相信不久的将来,电池AI会得到充分利用,进一步推动电池技术进步。  
          
参考文献       
Artificial Intelligence Applied to Battery Research: Hype or Reality?
Teo Lombardo, Marc Duquesnoy, Hassna El-Bouysidy, Fabian Årén, Alfonso Gallo-Bueno, Peter Bjørn Jørgensen, Arghya Bhowmik, Arnaud Demortière, Elixabete Ayerbe, Francisco Alcaide, Marine Reynaud, Javier Carrasco, Alexis Grimaud, Chao Zhang, Tejs Vegge, Patrik Johansson, and Alejandro A. Franco
Chemical Reviews 2022 122 (12), 10899-10969
DOI: 10.1021/acs.chemrev.1c00108   



首页

产品

公司

我们