卷绕工艺: 叠片工艺: 将涂覆后的正、负极片分割成要求尺寸,随后依照顺序将正极片、隔膜、负极片、隔膜对叠成“三明治”结构,后将多个“三明治”结构叠合,形成可以封装的电芯。叠片工艺的连续性靠的是隔膜的“Z”字形弯折,把正负极连续固定到隔膜上,隔膜“Z”字形穿行其间,隔开正负两极,最后包上外壳。 1 锂电池中段生产的核心环节——芯包制造 叠片与卷绕为锂电池中段生产的核心环节—卷绕、叠片形成的单体我们称之为芯包(Jellyroll),芯包制造影响电池制造的效率、安全和制造成本。根据GGII测算的价值量数据表明,叠片与卷绕约占锂电池中段生产设备的70%,而在锂电设备中,中段设备价值比重约为35%。 各类锂电池的制造可统一分为极片制作、电芯组装、电芯激活检测和模组/Pack 封装四大工序。其中,电芯组装属于锂电池电芯生产的中段环节,主要包括卷绕或叠片、电芯预封装、电芯注液等工序。
模切工序的主要差异:
(1)模切方式:
卷绕采用双边五金或者激光模切方式,模切完成后分切收卷,以卷料形式流向芯包成型工序;
叠片大多采用单边五金或者激光模切方式,模切后以片状物料流向芯包成型工序。
(2)极耳间距:
卷绕的模切极耳间距不等,内圈间距小,外圈间距大,极耳的间距依据卷绕每圈的周长差进行设计,以保证卷绕后的极组极耳落在同一位置;
叠片的极耳是等间距的。
(3)冲切位置:
卷绕会根据电芯要求,在片长位置设置Mark 孔定位,在检测到Mark孔时进行切断;
叠片由于极耳间距相同,可进行等间距切断。
芯包成型工序主要差异:
(1)极片状态:
(2)芯包完成判定:
(3)芯包形态:
(4)隔膜张力控制:
2 叠片的优劣势分析(对比卷绕) 叠片芯包的主要优势体现在: (1)空间利用率较高:卷绕电池在卷绕拐角部有弧度,在空间利用率上要低于叠片电池,而叠片结构可以充分利用电池的边角空间,有利于提升电池的能量密度。根据《中国车规级动力高速叠片电池发展白皮书》数据,从卷绕到叠片,VDA容量提升约2.5%,在相同体积的电芯设计情况下,叠片电芯的能量密度高出约5%左右。
(2)电池内部结构更加稳定:在电池循环过程中,伴随锂离子的嵌入,正、负极片均有膨胀,卷绕电池在拐角处内外层的内应力更容易产生差异,形成波浪状的变形,导致电池界面变差,电流分布不均匀,造成内部结构出现不同程度的褶皱,这是由于电池膨胀原理决定的,通过制造技术只能改善,不能消除。而叠片电池不存在拐角内应力不均匀问题,每层膨胀力接近,因此可以保持界面平整,内部结构更稳定。
(3)电池安全性更高:在电池循环过程中,卷绕电池拐角处由于极片的膨胀和收缩,循环过程中逐步产生缝隙(GAP),同时内应力无法充分释放,可能导致拐角处断裂,进而产生脱粉、锂枝晶生长等问题,甚至引发电池内短路,带来热失控风险。而叠片电池拐角处受力均匀,降低电池安全风险问题。
(4)循环寿命更长:鉴于工艺上的差异,叠片电池的极耳数量接近卷绕电池的2倍,电池内阻更低,电池发热量更少,同时循环后期的电池变形和膨胀更小,对电池衰减影响更小,因而循环寿命较卷绕电池更高。根据《中国车规级动力高速叠片电池发展白皮书》数据,在相同设计条件下,叠片电池的循环寿命比卷绕高10%左右,循环膨胀力比卷绕低40%以上。
(5)更适合高倍率、大尺寸电池:叠片工艺相当于多极片并联,在较短时间内容易完成大电流的放电,因此有利于提升电池的倍率性能。
总的来说,与传统卷绕工艺相比,由于受到卷针结构的限制,在往大尺寸电池发展的路径上,其缺陷逐渐体现出来。而叠片工艺更适合生产大尺寸甚至异型电池,其优势包括:
在叠片工艺中,材料的剔废仅仅只需要剔除单片,而卷绕剔废会导致整片,甚至前后两片极片的浪费(纠偏的互相影响),因此叠片工艺的材料利用率高。极片瑕疵越多,卷绕的材料报废率会大幅度提升;
叠片电池极耳数量多、内阻低、发热少,循环寿命更长,有效满足大容量电芯特别是储能领域对安全性和长循环寿命的需求;
叠片电池极片隔膜之间的界面一致性好,并且均匀,没有GAP问题和头尾OVERHANG问题。在循环过程中也不存在拐角内应力不均匀问题,对大尺寸电芯来说不易发生变形;
叠片电池充分利用边角空间,提升能量密度,减少电池系统(例如某些大型储能系统)的占地面积和土建成本。
叠片工艺没有得到大规模应用的核心问题:
(1)生产效率低: (2)毛刺和粉尘问题: 卷绕电池通常仅需对极片进行一次截断,而叠片电池需要按照规定的长度对极片进行数次截断,极片数量多,工艺难度大,在模切与叠片工序中,容易产生毛刺和粉尘问题,不仅会降低电池的能量密度,还可能击穿隔膜,导致电池自放电或电池内部短路问题,影响电池安全性,进而限制大批量生产。 3 叠片机设备路线介绍
设备效率高
单机效率高,轻松实现单叠片台500-600PPM,且有持续提升空间;
零辅助时间,相比其他叠片方式,每个电芯减少下料时间5-8s。
电芯界面平整,贴合性能好
隔膜张力稳定,不拉伸,不破坏隔膜的空隙率;
隔膜无褶皱与翻折风险;
正负极完全隔断,无交叉感染的安全风险;
极片隔膜界面好,接触均匀;
叠片对齐度稳定,电芯一致性好,对应抓片式Z型叠片,电芯容量一致性提升5-8%。
工序优异,适应未来
不需要CCD极片位置定位,减少CCD定位误判(一般CCD极片位置定位的误判率为1-3‰);
可以实现极片切断宽度、叠片对齐度全数据闭环(抓片式叠片由于需要极片压针,压针撤出后隔膜覆盖极片不能进行实时在线拍摄,因而得不到准确的极片对齐度数据);
极片隔膜界面平面接触,极片膨胀收缩仍然保持界面稳定,因而复合叠片更适合未来的半固体,固态电池的结构与制造。
4 结论与展望
电池是制造能源时代的核心产品,未来市场有着10倍以上的增长空间。目前我国锂电行业实质上只在电池产量上处在国际领先的地位,而电池制造质量仍亟待大幅度提升。这样才能更加稳定我国锂电的领先地位,同时使得锂电制造走向大规模、连续化和智能化。
现阶段,我国电池的制造痛点主要体现在: 整体合格率低:90%~94%; 材料利用率低:88%~90%; 制造安全性和效率都有待提升; 大规模制造方法待创立。 电池制造技术还需要大的突破。一方面在于它的生产效率,也就是实现大规模制造;另一方面是整个制造的质量需要大幅度的提升。并且质量提升的意义是非常明显的,在每生产1GWh的电芯条件下,提升1%的合格率可以获得的显性收益能达到800万左右,再加上安全方面的隐形改善,能达到1000万以上的价值提升。
总的来说,在未来方形电池大尺寸的趋势下,叠片类电池会成为主流的电池结构。但是要获得高品质的电芯结构,制造装备必须率先取得高质量的发展。因此,叠片设备的进步以及制造技术的突破需要走在电池发展的最前列。
上一篇 :
全方位解析锂电池叠片、卷绕工艺的区别!下一篇 :
全固态电池即将迎来量产元年——2024中国全固态电池产业研究