欢迎来到东莞市研科智能科技有限公司
新闻中心
产品目录
联系我们
叠片电池制造技术路线
目前在限制纯电动汽车续航里程以及能源补充效率方面,最核心的部件就是动力电池技术。在现阶段,业界主流的动力电池电芯制造工艺分为卷绕和叠片两种。不同的制作工艺将直接影响到电池的核心指标从而影响纯电动汽车的部分性能特性。


卷绕工艺:

通过固定卷针进行的卷绕,将前期处理好的正极极片、隔膜、负极极片按照顺序卷绕挤压成型。具体工艺是(由里到外)按隔膜、正极、隔膜、负极的顺序组成一个极组,通过卷绕法直接卷成圆柱形或椭圆柱形,再放在方壳或圆柱的金属外壳中。


叠片工艺:

将涂覆后的正、负极片分割成要求尺寸,随后依照顺序将正极片、隔膜、负极片、隔膜对叠成“三明治”结构,后将多个“三明治”结构叠合,形成可以封装的电芯。叠片工艺的连续性靠的是隔膜的“Z”字形弯折,把正负极连续固定到隔膜上,隔膜“Z”字形穿行其间,隔开正负两极,最后包上外壳。

1

锂电池中段生产的核心环节——芯包制造

叠片与卷绕为锂电池中段生产的核心环节—卷绕、叠片形成的单体我们称之为芯包(Jellyroll),芯包制造影响电池制造的效率、安全和制造成本根据GGII测算的价值量数据表明,叠片与卷绕约占锂电池中段生产设备的70%,而在锂电设备中,中段设备价值比重约为35%。

各类锂电池的制造可统一分为极片制作、电芯组装、电芯激活检测和模组/Pack 封装四大工序。其中,电芯组装属于锂电池电芯生产的中段环节,主要包括卷绕或叠片、电芯预封装、电芯注液等工序。

image.png

image.png

模切工序的主要差异:

(1)模切方式

卷绕采用双边五金或者激光模切方式,模切完成后分切收卷,以卷料形式流向芯包成型工序;

叠片大多采用单边五金或者激光模切方式,模切后以片状物料流向芯包成型工序。

(2)极耳间距

卷绕的模切极耳间距不等,内圈间距小,外圈间距大,极耳的间距依据卷绕每圈的周长差进行设计,以保证卷绕后的极组极耳落在同一位置;

叠片的极耳是等间距的。

(3)冲切位置

卷绕会根据电芯要求,在片长位置设置Mark 孔定位,在检测到Mark孔时进行切断;

叠片由于极耳间距相同,可进行等间距切断。

image.png

芯包成型工序主要差异:

(1)极片状态

  • 卷绕的正负极片连续;
  • 叠片的正负极片是片状物料。

(2)芯包完成判定

  • 卷绕检测到Mark 孔时进行裁断,完成芯包卷绕;
  • 叠片按照正负极片的设定数量进行叠片,达到设定值时完成一个芯包的叠片。

(3)芯包形态

  • 在相同条件下,叠片电池的极耳数较卷绕电池多一倍。

(4)隔膜张力控制

  • 卷绕在高速卷绕过程中隔膜会产生一定的张力,孔隙率会发生微小的变化;
  • 叠片在芯包成型时,极片的张力几乎为零,连续复合叠片隔膜孔隙率和原材料保持一致。但对于机械手抓放极片式叠片,隔膜的张力在零到最大之间变化,隔膜的孔隙率变化也很大。目前的单工位叠片,多工位切叠一体机都有这个问题。

2

叠片的优劣势分析(对比卷绕)

相较于卷绕,叠片工艺能很好的满足锂离子均匀、平行移动、极片平面均匀膨胀的条件,因而叠片电池能够更好的提升电池性能,在能量密度、安全性、循环寿命等方面具备优势。然而,由于每片需要单独分离抓取,因而出现生产效率低、工艺控制难等问题,导致大规模生产成本高且安全控制困难。但是目前主流电池企业均有叠片电池技术路线规划,在方形电池大尺寸趋势下,伴随叠片效率和粉尘、毛刺控制技术的进步,叠片工艺有望得到大规模应用。

叠片芯包的主要优势体现在:

(1)空间利用率较高:卷绕电池在卷绕拐角部有弧度,在空间利用率上要低于叠片电池,而叠片结构可以充分利用电池的边角空间,有利于提升电池的能量密度。根据《中国车规级动力高速叠片电池发展白皮书》数据,从卷绕到叠片,VDA容量提升约2.5%,在相同体积的电芯设计情况下,叠片电芯的能量密度高出约5%左右。

image.png


(2)电池内部结构更加稳定:在电池循环过程中,伴随锂离子的嵌入,正、负极片均有膨胀,卷绕电池在拐角处内外层的内应力更容易产生差异,形成波浪状的变形,导致电池界面变差,电流分布不均匀,造成内部结构出现不同程度的褶皱,这是由于电池膨胀原理决定的,通过制造技术只能改善,不能消除。而叠片电池不存在拐角内应力不均匀问题,每层膨胀力接近,因此可以保持界面平整,内部结构更稳定。

image.png


(3)电池安全性更高:在电池循环过程中,卷绕电池拐角处由于极片的膨胀和收缩,循环过程中逐步产生缝隙(GAP),同时内应力无法充分释放,可能导致拐角处断裂,进而产生脱粉、锂枝晶生长等问题,甚至引发电池内短路,带来热失控风险。而叠片电池拐角处受力均匀,降低电池安全风险问题。

image.png

(4)循环寿命更长:鉴于工艺上的差异,叠片电池的极耳数量接近卷绕电池的2倍,电池内阻更低,电池发热量更少,同时循环后期的电池变形和膨胀更小,对电池衰减影响更小,因而循环寿命较卷绕电池更高。根据《中国车规级动力高速叠片电池发展白皮书》数据,在相同设计条件下,叠片电池的循环寿命比卷绕高10%左右,循环膨胀力比卷绕低40%以上。

image.png

(5)更适合高倍率、大尺寸电池:叠片工艺相当于多极片并联,在较短时间内容易完成大电流的放电,因此有利于提升电池的倍率性能。


总的来说,与传统卷绕工艺相比,由于受到卷针结构的限制,在往大尺寸电池发展的路径上,其缺陷逐渐体现出来。而叠片工艺更适合生产大尺寸甚至异型电池,其优势包括

  • 在叠片工艺中,材料的剔废仅仅只需要剔除单片,而卷绕剔废会导致整片,甚至前后两片极片的浪费(纠偏的互相影响),因此叠片工艺的材料利用率高。极片瑕疵越多,卷绕的材料报废率会大幅度提升;

  • 叠片电池极耳数量多、内阻低、发热少,循环寿命更长,有效满足大容量电芯特别是储能领域对安全性和长循环寿命的需求;

  • 叠片电池极片隔膜之间的界面一致性好,并且均匀,没有GAP问题和头尾OVERHANG问题。在循环过程中也不存在拐角内应力不均匀问题,对大尺寸电芯来说不易发生变形;

  • 叠片电池充分利用边角空间,提升能量密度,减少电池系统(例如某些大型储能系统)的占地面积和土建成本。

叠片工艺没有得到大规模应用的核心问题:

(1)生产效率低

以国内主要设备厂商的参数为例,在极片长度不超过7m的情况下,方形自动卷绕机的生产效率大约在6PPM(part per minute,即每分钟生产的电芯个数)。圆柱电池的生产效率更是能达到30PPM左右。而目前传统的叠片机生产效率大约在0.5s/片/工位,假设单个叠片电芯的极片层数在30片,那么一个工位下叠片电池的生产效率大约为3.5PPM,低于卷绕电池,更大幅低于圆柱电池。

(2)毛刺和粉尘问题

卷绕电池通常仅需对极片进行一次截断,而叠片电池需要按照规定的长度对极片进行数次截断,极片数量多,工艺难度大,在模切与叠片工序中,容易产生毛刺和粉尘问题,不仅会降低电池的能量密度,还可能击穿隔膜,导致电池自放电或电池内部短路问题,影响电池安全性,进而限制大批量生产。

3

叠片机设备路线介绍

目前市场上主流叠片机设备路线主要有四种,分别为Z型切叠一体机、多片Z型切叠一体机、热复合堆叠机和热复合Z型叠机。
Z型切叠一体机,它是由模切、Z字型叠片机、贴胶热压机组成的,这是目前在国内应用最为广泛。
多片Z型切叠一体机,它由模切,多片多工位抓取极片同时叠,隔膜每层摆动,最后集中切断隔膜形成单体电芯,最后贴胶、热压。
热复合堆叠片机是将正负极片与隔膜热复合,随后经辊压,裁切成复合单元再进行叠片,属于制袋式叠片机,相较于Z 字型叠片,有送片复合工序,对隔膜表面涂胶有一定要求,优点是隔膜张力稳定,没有不均匀拉伸。
热复合Z型叠机也是将正负极片分别与隔膜复合,与堆叠不同的是,隔膜连续不切断,正极复合在上下两侧,叠片时不需要抓取极片,随着极片带的落下实现自动摆叠,因而可以实现高速叠片,隔膜连续匀速运动,没有不均匀拉伸问题。

image.png

image.png

相比之下,复合Z型叠片更合适电芯大规模的制造,高速复合Z型叠片机的技术优势主要体现在:

设备效率高

  • 单机效率高,轻松实现单叠片台500-600PPM,且有持续提升空间;

  • 零辅助时间,相比其他叠片方式,每个电芯减少下料时间5-8s。

电芯界面平整,贴合性能好

  • 隔膜张力稳定,不拉伸,不破坏隔膜的空隙率;

  • 隔膜无褶皱与翻折风险;

  • 正负极完全隔断,无交叉感染的安全风险;

  • 极片隔膜界面好,接触均匀;

  • 叠片对齐度稳定,电芯一致性好,对应抓片式Z型叠片,电芯容量一致性提升5-8%。

工序优异,适应未来

  • 不需要CCD极片位置定位,减少CCD定位误判(一般CCD极片位置定位的误判率为1-3‰);

  • 可以实现极片切断宽度、叠片对齐度全数据闭环(抓片式叠片由于需要极片压针,压针撤出后隔膜覆盖极片不能进行实时在线拍摄,因而得不到准确的极片对齐度数据);

  • 极片隔膜界面平面接触,极片膨胀收缩仍然保持界面稳定,因而复合叠片更适合未来的半固体,固态电池的结构与制造。

4

结论与展望

电池是制造能源时代的核心产品,未来市场有着10倍以上的增长空间。目前我国锂电行业实质上只在电池产量上处在国际领先的地位,而电池制造质量仍亟待大幅度提升。这样才能更加稳定我国锂电的领先地位,同时使得锂电制造走向大规模、连续化和智能化。

现阶段,我国电池的制造痛点主要体现在:

  • 整体合格率低:90%~94%;

  • 材料利用率低:88%~90%;

  • 制造安全性和效率都有待提升;

  • 大规模制造方法待创立。

电池制造技术还需要大的突破。一方面在于它的生产效率,也就是实现大规模制造;另一方面是整个制造的质量需要大幅度的提升。并且质量提升的意义是非常明显的,在每生产1GWh的电芯条件下,提升1%的合格率可以获得的显性收益能达到800万左右,再加上安全方面的隐形改善,能达到1000万以上的价值提升。


总的来说,在未来方形电池大尺寸的趋势下,叠片类电池会成为主流的电池结构。但是要获得高品质的电芯结构,制造装备必须率先取得高质量的发展。因此,叠片设备的进步以及制造技术的突破需要走在电池发展的最前列。


首页

产品

公司

我们